Abstract
The frankincense from Boswellia papyrifera plays important roles in rural livelihoods and the national economy. On the other hand, Boswellia papyrifera is under threat of extinction. Nevertheless, little is known about the sustainability and fair-trade relationship of the current production system of the frankincense commodity. The current paper primarily analyzed sustainability of the production, processing, and exporting systems of frankincense production using the total emergy flows to the product. Data were primarily collected through key informant interviews and from secondary sources in the Tigray region, northern Ethiopia. An emergy synthesis method was used to assess the direct and indirect environmental energy requirements for the production, processing, and exporting of frankincense. The Emergy Sustainability Index (ESI), and Ratios were used as indicators of ecological sustainability. Whereas the Emergy Exchange Ratio (EER) was used to evaluate the level of fair trade of frankincense with importing countries. The average total emergy of the system was 50.14E+20sej/year, of which 3.92E+20sej are from local renewable, 45.20E+20sej from local nonrenewable and 1.02E+20sej from imported nonrenewable sources. The Percent Renewable (% Ren), Environmental Loading Ratio (ELR), Emergy Yield Ratio (EYR) and ESI were 7.82, 11.79, 49.50 and 4.19, respectively. The EER showed that the region exported 11.8 times more emergy in frankincense products than it received in the money paid for it in 2008/09, showing unfair trade between the exporting and importing countries. According to our results, it can be concluded that the current production, processing, and exporting of frankincense is not sustainable.
Publisher
Forest Business Analytics sp. z o.o.
Reference79 articles.
1. Abel T. 2004. Systems diagrams for visualizing macroeconomics. Ecological Modelling: 178, 189194. https://doi.org/10.1016/j.ecolmodel.2003.12.035
2. Bastianoni S, Campbell D, Susani L, Tiezzi E. 2005. The Solar transformity of oil and petroleum natural gas. Ecological Modelling: 186, 212220.
3. https://doi.org/10.1016/j.ecolmodel.2005.01.015
4. Birhane B, Aynekulu E, Mekuria W, Endale D. 2011. Management, use and ecology of medicinal plants in the degraded drylands of Tigray, Northern Ethiopia. Journal of Horticulture and Forestry Vol. 3(2), 3241.
5. Birhane E, Mengistu T, Seyoum Y, Hagazi N, Putzel L, Mekonnen Rannestad M. 2017. Exclosures as forest and landscape restoration tools: lessons from Tigray Region, Ethiopia. 19(4): 3750. https://doi.org/10.1505/146554817822330498
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献