Abstract
Phenotypes can evolve through life-history tradeoffs. Termites have been the first eusocial insects on Earth, prompting life history evolution at the colony level. Despite this, termite life-history allocation strategies are poorly known. Here, we addressed this issue using novel data on three common species from the diverse, yet understudied Amazonian termite fauna: Neocapritermes braziliensis, Labiotermes labralis and Anoplotermes banksi. Using Oster and Wilson’s optimal caste ratio theory and Higashi et al.’s termite caste allocation theory as frameworks, we assessed how termite colonies should invest in growth (immatures), reproduction (alates) and defense (soldiers) as they accumulate workers. We also examined whether soldier loss in soil-feeding Apicotermitinae (A. banksi) may have affected allocation strategies. We found that: (1) the scaling of immature number was isometric in the three species, contrary to the leveling off expected under resource limitation; (2) colonies of all sizes were equally likely to produce any number of alates, rather than having a size threshold for reproduction; (3) the scaling of soldier number was unrelated to alate production, but varied from isometry in N. braziliensis to negative allometry in L. labralis despite their similar defense strategies; (4) A. banksi had more immatures per worker and a higher maximum alate number per worker than the other species, suggesting that soldier loss may have allowed higher relative investment in colony growth and, possibly, reproduction. Termites can provide novel insights into life-history allocation strategies and their relation to social evolution, and should be better incorporated into sociobiological theory.
Publisher
Universidade Estadual de Feira de Santana
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献