The Influence of Fire and Deforestation on the Floral Symmetry and Fitness of Adenocalymma nodosun (Bignoniaceae)

Author:

Stefani VanessaORCID,Lange Denise,Vilela Andréa Andrade,Ferreira Clébia Aparecida,Del-Claro Kleber

Abstract

Burnings and deforestation are severe disturbances to plants and may represent a stressful situation for plant growth, and they can also affect plant-pollinator interactions and the reproductive success of plants. In this study, we verified the variation in floral symmetry of Adenocalymma nodosum (Bignoniacea) in two areas, one post-fire and other after deforestation. We also verified the effects on plant-pollinator interactions and fruit set production. Results showed that A. nodosum flowers were more asymmetric in mowing areas than in fire areas. Asymmetrical flowers presented low nectar concentration and bee visitation rates. Although mowed environments produce fewer fruits and seeds than areas affected by fire, the change was not significant. Soil from the burnt area showed higher nutrient and organic matter concentration and less aluminum than that of mowed areas. Our results showed that A. nodosum flowers in the deforestation area are more asymmetric than those in the post-fire area. This result suggest that Cerrado plants may be less adapted to deforestation than to fire, since they have been facing fire events for thousand years in this biome. We suggest that the effects of environmental stress on the development and fitness of plants may provide an important breakthrough to the understanding of insect-plant interactions in Cerrado savanna, where burnings and deforestation are frequent anthropogenic effects.

Publisher

Universidade Estadual de Feira de Santana

Subject

Insect Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Land Use History on Biodiversity of Pine Plantations;Frontiers in Ecology and Evolution;2021-06-28

2. Fire mediated herbivory and plant defense of a neotropical shrub;Arthropod-Plant Interactions;2018-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3