Processing of signals at the multiradar system on the basis of surveillance two coordinate radars

Author:

Khudov H. V., ,Lishchenko V. M.,Hnyrya V. V.

Abstract

The subject of research in this work is the problem of developing methods for signal processing in a multi-radar system based on two-coordinate surveillance radar stations with mechanical azimuth rotation. The aim of the article is to improve the quality of airborne objects detection by combining the same type of two coordinate radars in a multi-radar system. It is proposed to combine the existing surveillance radar stations into a spatially separated coherent multi-radar system. The processing of radar information from individual positions of such spatially separated systems is carried out in the central information processing point, which can be combined with one of the positions or located separately. At such a point, it is advisable to carry out joint processing of radar information, the efficiency of which depends on the degree of coherence that is provided in the system. The synthesis of optimal detectors of coherent and incoherent signals is carried out in the work. The characteristics of air object detection in a multi-radar system with compatible signal reception are evaluated. The results obtained: increasing the number of radar stations in the system, regardless of the degree of signal coherence, showed the greatest efficiency in terms of increasing the signal-to-noise ratio when moving from a stand-alone radar station to a two element system, the rational number of radar stations in a multi-radar system should not exceed four. The expected signal-to-noise gain in a system of four radars can be up to eighteen decibels for a system with coherent signals and up to eleven decibels for a system with incoherent signals. The using of more than four radars is impractical.

Publisher

State University of Telecommunications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3