The Adaptation to Freezing Tolerance of Hydrated Lettuce Seeds: Effects of Regional Climate and of Seed Characteristics

Author:

Han Yingying1,Jaganathan Ganesh K1,Zhou Jingwen1,Wei Shiwei2,Liu Baolin1

Affiliation:

1. Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, China

2. Shanghai Agrobiological Gene Center, 2901 Beidi Road, Shanghai, China

Abstract

BACKGROUND: With global warming, soil seed banks at high altitudes face dual challenges, excessive water absorption and thinner snow cover that increase underground temperature. A better understanding of freezing tolerance of hydrated seeds provides insights for conservation in natural soil seed banks. OBJECTIVE: To understand the adaptation mechanisms of seed freezing tolerance under various climates, in relation to cooling rate and seed size. MATERIALS AND METHODS: Twelve ecotypes of lettuce (Lactuca sativa) seeds were collected from different geographical locations around the world. Seeds were fully hydrated and tested for their freezing tolerance using programmed cooling methods. RESULTS: The size of seeds from different climate regions varied, and was correlated with the freezing tolerance of the hydrated seeds (P< 0.05). Larger seeds showed poorer freezing tolerance. The local climates of maternal plants were also well correlated to seed freezing tolerance ( P< 0.05), especially under slow cooling conditions. The seeds collected in regions with high spring rainfall exhibited greater freezing tolerance. CONCLUSION: Freezing tolerance of hydrated seeds is affected by the climate of maternal plants and by seed size. Our data revealed the existence of an adaptation mechanism of freezing tolerance among various ecotypes of lettuce seeds.

Publisher

CryoLetters Limited Liability Partnership

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3