PERSPECTIVE: The comet assay as a method for assessing DNA damage in cryopreserved samples

Author:

Plitta-Michalak Beata P.1,Ramos Alice2,Stępień Dominika3,Trusiak Magdalena3,Michalak Marcin3

Affiliation:

1. Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac ????dzki 4, 10-719 Olsztyn, Poland

2. Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U. Porto), Rua de Jorge Viterbo Ferreira 228, 4050???313 Porto, Portugal

3. Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, M Oczapowskiego 1A, 10-721 Olsztyn, Poland

Abstract

The preservation of the nuclear genome's integrity is paramount for the viability and overall health of cells, tissues, and organisms. DNA, being susceptible to damage under physiological conditions and vulnerable to both endogenous and environmental factors, faces constant threats. To assess DNA damage and repair within individual eukaryotic cells, the comet assay presents itself as a versatile, gel electrophoresis-based, relatively simple, and highly sensitive method. Originally designed to monitor DNA damage and repair within populations of mammalian cells, the comet assay has now found applications across diverse domains, including yeast, protozoa, plants, and invertebrates. This technique has proven invaluable in cryopreservation studies, serving as a valuable adjunct for determining suitable cryopreservation protocols. These protocols encompass choices related to cryoprotectants, sample preparation, as well as storage conditions in terms of time and temperature. In the realm of animal cryopreservation research, the comet assay stands as a gold-standard method for assessing DNA integrity. Nevertheless, when applied in plant-oriented investigations, additional efforts are essential due to the distinct nature of plant cells and associated technical challenges. This review elucidates the fundamental principles underlying the comet assay, discusses its current iterations, and delineates its applications in the cryopreservation of both animal and plant specimens. Moreover, we delve into the primary challenges confronting the comet assay's utility as a monitoring tool in the context of plant sample cryopreservation.

Publisher

CryoLetters Limited Liability Partnership

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3