Methodology for composite materials shrinkage definition for use in shipbuilding and marine technology

Author:

Bolf Davor1,Hadjina Marko1,Zamarin Albert1,Matulja Tin1

Affiliation:

1. Sveučilište u Rijeci, Tehnički fakultet, Rijeka, Hrvatska

Abstract

Deformations of steel material in shipbuilding and marine technology applications as a result of mechanical or temperature influences are a well-known problem. However, in the modern shipbuilding industry, the application of alternative materials, especially composite materials, in the structure and for the equipment of the ship is increasingly represented. Consequently, there is a need to determine the deformation and change of characteristics of such composite materials as a result of various mechanical, and especially temperature influences that cause the so-called shrinkage. The basic composite production process involves connecting the matrix with a catalyst and accelerators that create temperature, then the material shrinks by cooling when it can change its dimensions and characteristics. Also, in order to achieve the best possible mechanical properties, composite materials are specially heated and then cooled according to strictly defined processes and curves. The ability to predict the characteristics and parameters of such deformations is important in the context of the application of composite materials. To define such deformations, different methods are used within individual numerical solvers, whose results can differ significantly from each other. Therefore, the authors in this paper present an established methodology for predicting mechanical and temperature deformations, and modelling of composite materials, based on the analysis of analytical methods and numerical solvers with the aim of defining the most accurate numerical solver. By applying the presented methodology, it is expected to raise the level of accuracy and quality of composite materials production as well as to raise the quality of design solutions and efficiency of production procedures during shipbuilding in particular, but also within different marine technology applications and during the product’s life cycle.

Publisher

University of Rijeka, Faculty of Maritime Studies

Subject

Engineering (miscellaneous),Social Sciences (miscellaneous),Geography, Planning and Development,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3