Affiliation:
1. SPC “Electronic Computing and Information Systems” (“ELVIS”), JSC
Abstract
The effect of various types of radiation and heavy nuclear particles on VLSI fabricated using CMOS technologies for bulk silicon at a level of 250–90 nm is analyzed. Developed and certified on test crystals (TC) are constructive-topological and circuit solutions for elements of digital libraries, complex-functional RAM blocks and peripheral mixed-signal blocks for designing radiation-hardened VLSI of the “system-on-chip” (SoC) type and RAM of category RT (products with an increased level of radiation resistance). The methodology of radiation-hardened by design (RHBD) has been further developed. For CAD tools, a design environment for VLSI of the RT category was created for manufacturing at Russian factories using available CMOS bulk technologies. Based on this design environment, competitive radiation-hardened high-performance processor CMOS VLSI SoC and VLSI RAM were created. Basic technical solutions are protected by RF patents.
Reference17 articles.
1. Никифоров А. Ю., Телец В. А., Бойченко Д. В. Требования радиационной стойкости — экзотика для гурманов или гарантия наличия и технического уровня результата разработки для всех категорий потребителей ЭКБ? // Наноиндустрия. 2018. № S (82). С. 39—41., A. Y. Nikiforov, V. A. Telets, and D. V. Boychenko, “Radiation Hardness Requirements — the Exotica for Gourmets or a Guarantee of the Design Result Success and High Technical Level for all Categories of Consumers?,” Nanoindustry Russia, pp. 39–41, 2018, doi: 10.22184/1993-8578.2018.82.39.41. (In Russ).
2. Радиационно-стойкое проектирование высокопроизводительных нанометровых КМОП СБИС «система-на-кристалле» / Ю. М. Герасимов и др. // Инфокоммуникационные и радиоэлектронные технологии. 2019. Т. 2, № 1. С.33—51., Y. M. Gerasimov, N. G. Grigoryev, A. V. Kobylyatskiy, Ya. Ya. Petrichkovich, and T. V. Solokhina, “Radiation-Hardening-By-Design of the High-Performance CMOS Nanometer System-on-chip,” Infocommunications and Radio Technologies, vol. 2, no. 1, pp. 33–51, 2019, doi: 10.15826/icrt.2019.02.1.04. (In Russ).
3. Герасимов Ю. М., Григорьев Н. Г., Петричкович Я. Я. Радиационно-стойкое проектирование нанометровых КМОП СБИС : реалии и мифы // Наноиндустрия. 2020. Том 13, № S5-2 (102). С. 319—324., Yu. M. Gerasimov, N. G. Grigoryev, and Ya. Ya. Petrikovich, “Radiation Hardened by Design of Nanometer CMOS VLSI: Reality and Myths,” Nanoindustry Russia, vol. 13, no. 5s, pp. 319–324, Dec. 2020, doi: 10.22184/1993-8578.2020.13.5s.319.324. (In Russ).
4. От первых КМОП транзисторов до радиационно-стойких нанометровых КМОП СБИС СнК / Ю. М. Герасимов и др. // Наноиндустрия. 2019. № S (89). С. 268—274., Yu. M. Gerasimov, N. G. Grigoryev, A. V. Kobylyatskiy, Ya. Ya. Petrikovich, and T. V. Solokhina, “From the First CMOS Transistors to the Radiation-Hardened Nanometer CMOS Systems-on-Chip,” Nanoindustry Russia, vol. 13, no. 5s, pp. 268–274, 2019, doi: 10.22184/NanoRus.2019.12.89.268.274. (In Russ).
5. Радиационная стойкость изделий ЭКБ / под ред. А. И. Чумакова. М. : НИЯУ МИФИ, 2015. 512 с., Radiation resistance of ECB products, / ed. A. I. Chumakov, Moscow: MEPhI, 2015. (In Russ).