CONTROL OF TEMPERATURE DISTRIBUTION PARAMETERS IN HUMAN FOREARM DURING UHF HYPERTHERMIA BY PASSIVE ACOUSTIC THERMOMETRY AND INFRARED THERMOGRAPHY
Author:
Erofeev A.12, Granovskiy N.1, Selivanova P.1, Shugaeva A.1, Sharakshane A.12, Scherbakov M.2, Mansfeld A.3, Anosov A.12
Affiliation:
1. I.M. Sechenov First Moscow State Medical University 2. Kotelnikov Institute of Radioengineering and Electronics of RAS 3. Federal Research Center Institute of Applied Physics, RAS
Abstract
In this work we performed UHF heating with an electromagnetic field of frequency 40.68 MHz and power of 30 W on human forearms and phantoms made of plastisol with simulated blood flow at physiotherapeutic doses of 10, 15 and 20 minutes. Thermal acoustic radiation of heated objects measured with a multichannel acoustothermograph with a bandwidth of 1.6-2.5 MHz, an integration time of 10 C, and a threshold sensitivity of 0.2 K. Additionally, the surface temperature of the forearm measured by infrared thermometry and the internal temperature of the phantom by an electronic thermometer. We obtained data about temperature distribution patterns in the human forearm and in the plastisol phantom. Blood flow in the phantoms was simulated by copper, aluminum and polyvinyl chloride tubes, through which water from a thermostat was passed. Comparison of cooling rates of different types of phantoms showed that the thermal properties of the phantom with aluminum tubes were the closest to the soft tissues of the human forearm. The data of objective control do not agree with the subjective sensations of the subjects, but agree well with each other, which confirms the necessity and shows the possibility of objective assessment of temperature distribution parameters in the soft tissues of the human body during hyperthermia during UHF-physiotherapy.
Publisher
RIOR Publishing Center
Reference24 articles.
1. Сафроненко В.А., Гасанов М.З. Физиотерапия и физиопрофилактика: учеб.-метод. Пособие. ГБОУ ВПО РостГМУ Минздрава России, каф. внутренних болезней с основами общей физиотерапии № 1. Изд- во РостГМУ, 2015, с. 38-40., Safronenko V.A., Hasanov M.Z. Physiotherapy and physioprophylaxis: educational-methodical manual. GBOU VPO RostGMU Ministry of Health of Russia, Department of Internal Medicine with the basics of general physiotherapy no. 1. RostGMU Publishing House, 2015, pp. 38-40. (In Russ.) 2. Winter L., Oberacker E., Paul K., Ji Y., Oezerdem C., Ghadjar P., Thieme A., Budach V., Wust P., Niendorf T. Magnetic resonance thermometry: methodology, pitfalls and practical solutions. International Journal of Hyperthermia, 2016, vol. 32, no. 1, pp. 63-75, doi: 10.3109/02656736.2015.1108462., Winter L., Oberacker E., Paul K., Ji Y., Oezerdem C., Ghadjar P., Thieme A., Budach V., Wust P., Niendorf T. Magnetic resonance thermometry: methodology, pitfalls and practical solutions. International Journal of Hyperthermia, 2016, vol. 32, no. 1, pp. 63-75, doi: 10.3109/02656736.2015.1108462. 3. Pouch A.M., Cary T.W., Schultz S.M., Sehgal C.M. In vivo noninvasive temperature measurement by B‐mode ultrasound imaging. Journal of Ultrasound in Medicine, 2010, vol. 29, no. 11, pp. 1595-1606, doi: 10.7863/jum.2010.29.11.1595., Pouch A.M., Cary T.W., Schultz S.M., Sehgal C.M. In vivo noninvasive temperature measurement by B‐mode ultrasound imaging. Journal of Ultrasound in Medicine, 2010, vol. 29, no. 11, pp. 1595-1606, doi: 10.7863/jum.2010.29.11.1595. 4. Hand J.W., Van Leeuwen G.M.J., Mizushina S., Van de Kamer J.B., Maruyama K., Sugiura T., Azzopardi D.V., Edwards A.D. Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modelling. Physics in Medicine & Biology, 2001, vol. 46, no. 7, p. 1885, doi: 10.1088/0031-9155/46/7/311., Hand J.W., Van Leeuwen G.M.J., Mizushina S., Van de Kamer J.B., Maruyama K., Sugiura T., Azzopardi D.V., Edwards A.D. Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modelling. Physics in Medicine & Biology, 2001, vol. 46, no. 7, p. 1885, doi: 10.1088/0031-9155/46/7/311. 5. Буров В.А., Дариалашвили П.И., Евтухов С.Н., Румянцева О.Д. Экспериментальное моделирование процессов активно-пассивной термоакустической томографии. Акуст. журн., 2004, т. 50, № 3, с. 298-310., Burov V.A., Darialashvili P.I., Evtukhov S.N., Rumyantseva O.D. Experimental modeling of the processes of active-passive thermoacoustic tomography. Acoustical Physics, 2004, vol. 50, no. 3, pp. 243-254, doi: 10.1134/1.1739492. (In Russ.)
|
|