Prospects for the use of predictive analytics in construction

Author:

Kamaeva Iuliia1,Adamcevich Lyubov'1

Affiliation:

1. Moscow State University of Civil Engineering

Abstract

In an era when the amount of data is growing exponentially, it becomes impossible to effectively process them with the old methods. As a result, there is a growing need to introduce new technologies for processing and analyzing data in all areas of activity, where the construction industry is no exception. One of the innovative ways to use data is predictive - predictive or predictive analytics. The article gives an idea of the problems and prospects for the use of predictive analytics in the construction industry in Russia. A review of publications presented in the RSCI - a bibliographic database of scientific publications, mainly by scientists from the Russian Federation and CIS countries, was carried out for the keywords "predictive analytics" and "construction", however, the analysis of published materials for the period from 2011 to 2023 was carried out. showed that only 7 publications were recorded for the specified keywords, which indicates that research in this direction is still of a pioneering nature. At the same time, it should be noted that the publications deal with drilling issues or are related to energy supply processes. Only 1 work seems interesting within the framework of the presented article, where predictive analytics is applied to preventive maintenance. The analytics of the construction industry market by respondent companies (organizations of architecture, engineering and construction) is presented. Analyzed existing services and platforms, including the function of predictive (forecast) analytics. It is noted that the departure of foreign vendors motivated Russian developers to quickly approach the issue of import substitution, and in 2022 a number of domestic companies presented their developments with the functionality of predictive analytics.

Publisher

RIOR Publishing Center

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Business and International Management

Reference21 articles.

1. Стишенко С.И., Соболев А.Е., Петраков Ю.А. Удаленный мониторинг бурения 4.0..Свидетельство о регистрации программы для ЭВМ 2021611808, 05.02.2021. Заявка № 2021611122 от 05.02.2021., Stishenko S.I., Sobolev A.E., Petrakov Yu.A. Remote drilling monitoring 4.0..Computer program registration certificate 2021611808, 02/05/2021. Application No. 2021611122 dated 02/05/2021.

2. Репин А.А., Буланкин А.В., Дрогомирецкий А.В., Миляев С.А., Макаров М.В., Исаев И.С., Овчинников Р.В. Программа управления жизненным циклом объекта, на основе BIM цифрового двойника. Свидетельство о регистрации программы для ЭВМ 2021664711, 10.09.2021. Заявка № 2021663765 от 03.09.2021. 0, Repin A.A., Bulankin A.V., Drogomiretsky A.V., Milyaev S.A., Makarov M.V., Isaev I.S., Ovchinnikov R.V. Object life cycle management program based on BIM digital twin. Certificate of registration of the computer program 2021664711, 09/10/2021. Application No. 2021663765 dated 09/03/2021. 0

3. Дмитриевский А.Н., Еремин Н.А., Ложников П.С., Клиновенко С.А., Столяров В.Е., Сафарова Е.А. Интеллектуальные инновационные технологии при строительстве скважин и эксплуатации нефтегазовых месторождений//Газовая промышленность. 2021. № 3 (813). С. 96-104. 6, Dmitrievskii A.N., Eremin N.A., Lozhnikov P.S., Klinovenko S.A., Stolyarov V.E., Safarova E.A. Intelligent innovative technologies in the construction of wells and the operation of oil and gas fields//Gas industry. 2021. No. 3 (813). pp. 96-104. 6

4. Никитин В.И., Леонтьев М.В. Обзор успешных практик применения методов предиктивной аналитики для моделирования процесса бурения// Ашировские чтения. 2022. Т. 2. № 1 (14). С. 90-94, Nikitin V.I., Leontiev M.V. A Review of Successful Practices in Applying Predictive Analytics Methods for Modeling the Drilling Process // Ashirov Readings. 2022. Vol. 2. No. 1 (14). pp. 90-94

5. Глотов А.В., Зайцев Н.Н. Цифровая эволюция мобильных ГТЭС// Энергия единой сети. 2018. № 3 (38). С. 6-10., Glotov A.V., Zaitsev N.N. Digital evolution of mobile gas turbine power plants// Energy of a single network. 2018. No. 3 (38). pp. 6-10.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3