Detection of defects in building materials using artificial intelligence systems

Author:

Pilyay Andrey1

Affiliation:

1. Moscow State University of Civil Engineering

Abstract

This paper focuses on the problem of automatic defect detection in building materials and the use of deep learning and pattern recognition to solve this problem. The paper describes various methods that can be used to solve this problem, including transfer learning, data augmentation, and fine-tuning, and discusses the advantages and limitations of each approach. The article also describes a convolutional neural network (CNN) architecture that can be used to detect defects in building materials, specifying the purpose and functionality of each layer. In addition, the article presents the mathematical formulas necessary for this approach, including the convolution operation, the ReLU activation function, the maximum association operation, the dropout operation, and the sigmoid activation function. Overall, the paper highlights the potential of deep learning and pattern recognition in building materials quality control and the benefits that automated systems can bring to the construction industry. The use of these technologies can increase efficiency, reduce costs, and improve the quality of construction projects, ultimately leading to safer and more durable structures.

Publisher

RIOR Publishing Center

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Business and International Management

Reference12 articles.

1. Гинзбург А.В., Адамцевич Л.А., Адамцевич А.О. Строительная отрасль и концепция "Индустрия 4.0": обзор//Вестник МГСУ. 2021. Т. 16. № 7. С. 885-911., Ginzburg A.V., Adamtsevich L.A., Adamtsevich A.O. The construction industry and the concept of "Industry 4.0": an overview // Vestnik MGSU. 2021. V. 16. No. 7. S. 885-911.

2. Шилов Л.А., Шилова Л.А. Подход к управлению жизненным циклом строительного объекта на основе bim-технологий//Научно-технический вестник Поволжья. 2019. № 2. С. 86., Shilov L.A., Shilova L.A. Podhod k upravleniyu zhiznennym ciklom stroitel'nogo ob"ekta na osnove bim-tekhnologij//Nauchno-tekhnicheskij vestnik Povolzh'ya. 2019. № 2. S. 86.

3. Шилова Л.А. Информационная поддержка управления объектами жизнеобеспечения с учетом критериев инженерной и функциональной устойчивости на случай чрезвычайной ситуации//Информационные ресурсы России. 2014. № 6 (142). С. 24-27., Shilova L.A. Informacionnaya podderzhka upravleniya ob"ektami zhizneobespecheniya s uchetom kriteriev inzhenernoj i funkcional'noj ustojchivosti na sluchaj chrezvychajnoj situacii//Informacionnye resursy Rossii. 2014. № 6 (142). S. 24-27.

4. Ильинова В.В., Мицевич В.Д. Международный опыт использования BIM-технологий в строительстве//Российский внешнеэкономический вестник. 2021. № 6. С. 79-93., Ilyinova V.V., Mitsevich V.D. International experience in the use of BIM technologies in construction // Russian Foreign Economic Bulletin. 2021. No. 6. S. 79-93.

5. Кисель Т.Н., Тюрин И.А. Особенности внедрения технологий информационного моделирования на российских предприятиях инвестиционно-строительной сферы// Финансовая экономика. 2020. № 3. С. 151-155., Kisel T.N., Tyurin I.A. Features of the implementation of information modeling technologies at Russian enterprises in the investment and construction sector // Financial Economics. 2020. No. 3. S. 151-155.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3