Using artificial intelligence systems to estimate the time and cost of a construction project

Author:

Pilyay Irina1

Affiliation:

1. Moscow State University of Civil Engineering

Abstract

The purpose of this article is to determine whether various artificial intelligence models can be used to estimate the time and cost of a construction project. Construction projects are complex and time-consuming, they include many factors that can affect the overall cost and duration of the project. Accurately estimating the time and cost of a construction project is critical to project management and planning. However, traditional methods of estimating these factors are often inefficient because of their dependence on historical data and limited scope. Artificial intelligence (AI) has emerged as a potential solution for improving construction project estimating. AI models can analyze a myriad of data, including historical project data, weather data, labor, and material costs, to provide more accurate predictions. Regression algorithms, in particular, have been shown to be effective in predicting project completion dates and costs based on various input factors. One advantage of using AI to evaluate construction projects is that it can account for complex and dynamic factors that traditional methods often overlook. For example, weather conditions can have a significant impact on construction projects, and AI models can incorporate this factor into their predictions. AI can also analyze data in real time, allowing for more timely adjustments to project plans and budgets. However, using AI to evaluate construction projects also presents some challenges. One potential challenge is the quality and reliability of the data used to train the models. AI models are only as good as the data they are trained on, so it is important to ensure that the data used is accurate and complete. In addition, AI models can be complex and require expertise to develop and maintain.

Publisher

RIOR Publishing Center

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Business and International Management

Reference15 articles.

1. Гинзбург А.В., Адамцевич Л.А., Адамцевич А.О. Строительная отрасль и концепция "Индустрия 4.0": обзор//Вестник МГСУ. 2021. Т. 16. № 7. С. 885-911., Ginzburg A.V., Adamtsevich L.A., Adamtsevich A.O. The construction industry and the concept of "Industry 4.0": an overview // Vestnik MGSU. 2021. V. 16. No. 7. S. 885-911.

2. Шилов Л.А., Шилова Л.А. Подход к управлению жизненным циклом строительного объекта на основе bim-технологий//Научно-технический вестник Поволжья. 2019. № 2. С. 86., Shilov L.A., Shilova L.A. Podhod k upravleniyu zhiznennym ciklom stroitel'nogo ob"ekta na osnove bim-tekhnologij//Nauchno-tekhnicheskij vestnik Povolzh'ya. 2019. № 2. S. 86.

3. Шилова Л.А. Информационная поддержка управления объектами жизнеобеспечения с учетом критериев инженерной и функциональной устойчивости на случай чрезвычайной ситуации//Информационные ресурсы России. 2014. № 6 (142). С. 24-27., Shilova L.A. Informacionnaya podderzhka upravleniya ob"ektami zhizneobespecheniya s uchetom kriteriev inzhenernoj i funkcional'noj ustojchivosti na sluchaj chrezvychajnoj situacii//Informacionnye resursy Rossii. 2014. № 6 (142). S. 24-27.

4. Адамцевич Л.А., Пиляй А.И. Применение систем искусственного интеллекта при реставрации объектов культурного наследия//Cтроительное производство. 2022. № 3. С. 54-58., Adamcevich L.A., Pilyay A.I. Primenenie sistem iskusstvennogo intellekta pri restavracii ob"ektov kul'turnogo naslediya//Ctroitel'noe proizvodstvo. 2022. № 3. S. 54-58.

5. Пиляй А.И. Cравнение нейронных сетей для анализа соблюдения требований охраны труда//Перспективы науки. 2021. № 2 (137). С. 166-170., Pilyay A.I. Cravnenie nejronnyh setej dlya analiza soblyudeniya trebovanij ohrany truda//Perspektivy nauki. 2021. № 2 (137). S. 166-170.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Delay Dispute Cases: Comparative Analysis and Claimed Value Prediction Model;Journal of Legal Affairs and Dispute Resolution in Engineering and Construction;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3