Synthesis of Carbon Nanotubes from High-Density Polyethylene Waste

Author:

Smagulova G.T.,Vassilyeva N.,Kaidar B.B.,Yesbolov N.,Prikhodko N.G.,Nemkayeva R.

Abstract

This article presents results of carbon nanotubes synthesis from household high-density polyethylene waste by thermal decomposition. A specific feature of this work is that the decomposition of high-density polyethylene waste and synthesis of carbon nanotubes were carried out in one-step using three-zone chemical vapor deposition reactor. The effect of temperature in the range of 450‒550 °C on decomposition products of high-density polyethylene was investigated. The decomposition products of polyethylene wastes were investigated by IR Fourier spectroscopy. Cenospheres obtained from ash and slag waste from thermal power plants during coal combustion were used as a catalyst for the synthesis of carbon nanotubes. The cenospheres were impregnated with an aqueous solution of iron nitrate. It was found that as a result of thermal decomposition of high-density polyethylene waste at temperature of 450 °C, gaseous carbon-containing compounds are formed, which upon further heating to 800 °C lead to the formation of carbon nanotubes with a diameter of 16‒21 nm on the surface of catalyst. Physicochemical analysis showed that turbostratic carbon is almost completely absent in the formed product. Carbon nanotubes analysis was performed by scanning electron microscopy and Raman spectroscopy.

Publisher

Institute of Combustion Problems

Subject

Condensed Matter Physics,General Materials Science,General Chemical Engineering,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3