Cu-Expanded Graphite Composite Material Preparation and Thermal Properties

Author:

Karzov I.,Shornikova O.,Filimonov S.,Malakho A.,Avdeev V.

Abstract

A composite material based on expanded graphite (EG) and copper compounds was obtained by natural graphite oxidation with 95% nitric acid, copper (II) nitrate and granular carbamide addition with further rapid heat treatment at three different exfoliation temperatures: 800, 1000 and 1200 °С. It was found that the composition of copper containing graphite material depends on the temperature and the atmosphere of thermal expansion. The formation of copper oxides can be eliminated if rapid heat treatment is conducted in nitrogen at 1200 °С. Thermal conductive properties: thermal diffusivity and specific heat capacity of obtained Cu-expanded graphite samples were measured. It was revealed that the dependence of thermal conductivity (TC) of Cu-graphite material has non-linear character in the studied range of copper content. The incorporation of 3% copper into expanded graphite allows to increase its thermal conductivity by 20% while the further Cu content growth leads to the TC decrease from 6 to 4.5 W/(m∙K). The specific heat capacity is constant at ω(Cu)<3% and reduces in the range (3‒8)% Cu. The advantage of proposed technique of Cu-expanded graphite materials preparation is exclusion graphite intercalation compounds hydrolysis step with further drying because of carbamide addition.

Publisher

Institute of Combustion Problems

Subject

Condensed Matter Physics,General Materials Science,General Chemical Engineering,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anisotropy of Electrical and Thermal Conductivity in High-Density Graphite Foils;Nanomaterials;2024-07-07

2. Effect of green body density on the properties of graphite-molybdenum-titanium composite sintered by spark plasma sintering;Journal of the European Ceramic Society;2022-05

3. Conventional Carbon Allotropes;Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3