Synthesis of High-Purity Silica Nanoparticles by Sol-Gel Method

Author:

Lazareva S.V.,Shikina N.V.,Tatarova L.E.,Ismagilov Z.R.

Abstract

Colloidal silica (silica sol) nanoparticles were synthesized by ammonia- and hydrochloric acid-catalyzed hydrolysis of tetraethoxysilane with subsequent condensation and polymerization. Silica particles with the size of 12‒160 nm were obtained at different temperatures and ratios of the initial reactants and studied by means of TEM, AFM, IR spectroscopy and zeta-potential measurements. The reaction conditions providing the minimum particle size in the final product of the most complete hydrolysis were determined. At pH above 8.5, an increase in the SiO2 content of the sol to 23 wt.% did not change the particle size. At a low (~ 1.8 wt.%) SiO2 content of the sol, a wide variation in pH also did not exert a significant effect on the particle size. Stability of the silica sols synthesized in an alkaline medium was enhanced by the replacement of alcohol with water during evaporation at pH 8.5‒9.5. The possibility to produce silica sols with the required characteristics (particle size, pH, stability, purity, and SiO2 content in an aqueous or alcohol medium) makes them applicable in various industries.

Publisher

Institute of Combustion Problems

Subject

Condensed Matter Physics,General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3