Spray-Pyrolysis Preparation of Li4Ti5O12/Si Composites for Lithium-Ion Batteries

Author:

Terechshenko A.,Sanbayeva A.,Babaa M.R.,Nurpeissova A.,Bakenov Z.

Abstract

This paper introduces the novel anode material which is Li4Ti5O12/Si prepared by gas-stated method, mainly spray-pyrolysis technique. The literature review performed in this paper revealed two main components which can be potentially mixed into the efficient anode material. Silicon (Si) has the highest possible capacity of 4200 mAh g-1 among all commonly used anodes. Due to its ‘zero-strain’ (<1% volume change) properties and stable cycling, Li4Ti5O12 (LTO) is considered as a promising anode for lithium ion batteries. Combination of these two anode materials is considered as a promising approach to prepare a high performance composite anode. The precursor solution consisted of homogeneous mixture of lithium nitrate and titanium tetraisopropoxide dissolved in deionized water with equimolar concentration of 0.5 M. The aerosol formation was performed at nitrogen environment and the droplets were carried into the quartz tube reactor at the flowrate of 4 L min-1. The rector temperature was held at 800 °C. The spray-pyrolysis synthesis was performed as one-step operation, excluding the need of calcination of as-prepared powders, and continuous process by the mean of peristaltic pump. The as-prepared powders had wide size distribution from nanometers to microns. The materials obtained had well-crystallized structure with insignificant amount of impurities. The powders were analyzed by the following analytical equipment: 1) the presence of Li4Ti5O12 and Si in the obtained composite was confirmed by X-ray diffraction technique (XRD); 2) The structure and morphology of LTO and Si molecules were observed and studied with Scanning Electron Microscopy (SEM).

Publisher

Institute of Combustion Problems

Subject

Condensed Matter Physics,General Materials Science,General Chemical Engineering,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3