Computer Simulation and Comparison of the Efficiency of Conventional, Polymer and Hydrogel Waterflooding of Inhomogeneous Oil Reservoirs

Author:

Chekalin A.N.,Konyukhov V.M.,Konyukhov I.V.,Kosterin A.V.,Krasnov S.V.

Abstract

The oil displacement in a layered inhomogeneous reservoir using two types of physical-chemical technologies (polymer flooding and hydrogel flooding) is the subject of this research. In the first case the aqueous polymer solution of the desired concentration is injected into the porous reservoir creating the high-viscous moving fields. Unlike this technology, the hydrogel flooding is characterized by creation and evolution of the moving hydrogel field directly in porous medium in result of chemical reaction between the water solutions of two gel-forming components which one after another are injected into the oil reservoir with given time interruption. The first component is sorbed more intensively and moves slower than the second one, so when it gradually overtakes the first solution, they begin chemically react with creation of hydrogel. Special numerical methods, algorithms and computer software are developed to solve these systems of nonlinear equations, study and compare an efficiency of the oil field development at the different type of waterflooding. It is shown that creations of the moving polymer or hydrogel fields significantly increases the uniformity of oil displacement in all layers of reservoir and improve their basic exploitation parameters due to the cross-flows between layers and creation of the moving structures in the velocity field of two-phase flow. In doing so, hydrogel technology may be much more effectiveness in comparison with polymer flooding.

Publisher

Institute of Combustion Problems

Subject

Condensed Matter Physics,General Materials Science,General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3