Author:
Xanthopouloua G.G.,Novikova V.A.,Knysha Yu.A.,Amosova A.P.
Abstract
<p>The oxidation of CO covers a wide range of applications from gas masks, gas sensors, indoor air quality control to hydrogen purification for polymer electrolyte fuel cells. The reaction attracts renewed interest both in fundamental and applied research of catalysis and electrochemistry. Recent developments and trends in catalysis towards the synthesis of nanocatalysts for CO oxidation are discussed in this review. Different modifications made to conventional catalysts synthesis approaches for preparation of nanocatalysts are critically analyzed. Nanocatalysts developed on the basis of noble metals completely convert CO at temperatures below 0 °C. The development of active and stable catalysts without noble metals for low-temperature CO oxidation is a significant challenge. It was found that Co<sub>3</sub>O<sub>4</sub> nanorods can be steadily active for CO oxidation at a temperature as low as –77 °C. High activity of catalysts at low temperatures connected with nanosize particles and high surface area. This review summarized main directions of nanocatalysts development for CO low temperature oxidation.</p>
Publisher
Institute of Combustion Problems
Subject
Condensed Matter Physics,General Materials Science,General Chemical Engineering,General Chemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献