Investigation of Gold Electrosorption onto Gold and Carbon Electrodes using an Electrochemical Quartz Crystal Microbalance

Author:

Mansurov Z.,Supiyeva Zh.,Avchukir Kh.,Taurbekov A.,Yeleuov M.,Smagulova G.,Mansurova M.,Biisenbayev M.,Pavlenko V.

Abstract

The adsorption behavior of Au3+ ions on metal electrodes has been studied using an electrochemical quartz crystal microbalance combined with the cyclic voltammetry technique. The experiments were carried out for HAuCl4 using 0.1 mol·L-1 HCl (pH~1) as a background electrolyte solution. The kinetics of electroreduction of Au3+ ions on the rice husk based activated carbon and gold electrodes in chloride electrolytes by the cyclic voltammetry and the electrochemical quartz crystal microbalance with a variation of the scan rate in the range of 5‒50 mV·s-1 has been studied. The diffusion coefficient of Au3+ ions for the tested solution on gold and carbon electrodes was determined by the cyclic voltammetry method on the basis of the Randles-Ševčik equation. It is found that electroreduction of gold goes via the discharge of AuCl4- complexes to the formation of metallic gold with a current efficiency of 97‒99%. The scanning electron microscopic images of the gold adsorbed carbon surface was taken to see gold particles and their morphology. In SEM images, it is clearly seen that the surface of carbon has a relief structure and gold has grown in the form of clusters. The smallest gold nanoparticles that could be examined were 100‒250 nm in diameter on the surface of the c arbon electrode.

Publisher

Institute of Combustion Problems

Subject

Condensed Matter Physics,General Materials Science,General Chemical Engineering,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of LiCl on the kinetics of Mg2+ insertion into TiO2 prepared by solid-state chemical reaction;Journal of Solid State Electrochemistry;2023-11-18

2. Experimental Determination of Electrochemical Sorption/Desorption Properties of Gold(III) Ions;Russian Journal of Non-Ferrous Metals;2021-05

3. Experimental study of gold (III) ion electrochemical sorption/desorption regularities;Izvestiya Vuzov. Tsvetnaya Metallurgiya (Universities' Proceedings Non-Ferrous Metallurgy);2021-04-18

4. Recycling of Low-Density Polyethylene Waste for Synthesis of Carbon Nanotubes;Journal of Engineering Physics and Thermophysics;2021-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3