Methodology of the Experiments to Study Lithium CPS Interaction with Deuterium Under Conditions of Reactor Irradiation

Author:

Ponkratov Yu.,Nikitenkov N.,Tazhibayeva I.,Zaurbekova Zh.,Gnyrya V.,Samarkhanov K.,Lyublinski I.,Mazzitelli G.

Abstract

Problems of plasma-facing materials degradation and in-vessel element destructions, tritium accumulation and plasma pollution can be overcome by the use of liquid metals with low atomic number. The best candidate as a material for divertor receiving plates and other in-vessel devices is lithium. One of the problems associated with the use of such lithium systems in the fusion reactors is to determine the parameters of the working gases interaction with plasma facing surfaces under conditions simulating real operation, i.e. under conditions of neutron and gamma radiation. This paper describes a technique of the reactor experiments to study lithium capillary-porous systems (CPS) interaction with deuterium under neutron irradiation. The neutron-physical and thermophysical calculations were the basis for the design development and further manufacture of a unique irradiation ampoule device with a lithium CPS sample. Several experiments were performed to calibrate the deuterium fluxes through experimental cell with lithium CPS; and preliminary results of these experiments were obtained.

Publisher

Institute of Combustion Problems

Subject

Condensed Matter Physics,General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3