Electrochemical Properties of the Composites Based on Multiwall Carbon Nanotubes Modified with Nanoparticles of Mixed Cobalt and Nickel Hydroxides

Author:

Kachina E.V.,Ivanova N.V.,Zakharov Yu.A.,Simenyuk G.Yu.,Ismagilov Z.R.,Lomakin M.V.

Abstract

A simple and reproducible method of chemical deposition was used to modify carbon nanotubes cobalt and nickel hydroxides. Thus the composites containing 5 and 10 wt.% Co0.5Ni0.5(OH)2(the ratio of hydroxides1:1)were obtained based on the matrix of multiwall carbon nanotubes: non-functionalized (MWCNT) and functionalized (MWCNT-f). The physicochemical properties of the obtained nanocomposites were investigated with a focus on the characteristics that are relevant for use as the electrode materials of supercapacitors. Electrical capacity characteristics (specific electrical capacitance, internal resistance, etc.) of nanocomposites were determined using cyclic voltammetry and impedancemetry. The effect of matrix functionalization and filler content on the electrochemical characteristics of the composites was considered. It is established that the surface of carbon nanotubes allows the accumulation of the charge in the electrical double layer, in particular at high polarization rates. At low rates, the contribution from the pseudo-capacity component increases on the filler nanoparticles, on the surface of channels in nanotubes, and pore surface in hydroxide aggregates. An increase in the specific electrical capacitance of the composites by a factor of 1.5 to the capacitance of MWCNTs was achieved. The schemes of electrode processes in the nanocomposite are proposed, and the nature of redox peaks on voltammetric curves providing the occurrence of the pseudo-capacity component is revealed. Relying on the analysis of impedancemetry results, the equivalent series resistance and the charge transfer resistance are evaluated. An equivalent circuit of the cell with the working composite electrode is proposed, and its major parameters are calculated.

Publisher

Institute of Combustion Problems

Subject

Condensed Matter Physics,General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3