Nitric Oxide Pathways in Surface-Flame Radiant Burners

Author:

Rumminger M.D.,Dibble R.W.

Abstract

<p>Nitrogen oxide (NO<sub>x</sub>) formation in surface-flame burners is studied. Surface-flame burners are typically made of metal fibers, ceramic fibers, or ceramic foam and provide radiant flux with low pollutant emissions. A one-dimensional model represents combustion on and within the porous medium using multistep chemistry, separate gas and energy equations, and a radiatively participating porous medium. We describe experimental measurements of NO<sub>x</sub> profiles above a surface-flame burner and compare them to model predictions. The model predicts NO<sub>x</sub> concentration with reasonable success. Deviations between model and experiment are primarily the result of heat loss in the experiment that is not considered in the model. Reaction rate analysis is performed to identify the chemical kinetic source of NO in the flame. Zeldovich NO is significant only at the highest firing rate studied (600 kW/m<sup>2</sup>, ϕ = 0.9), where it is responsible for 50-60% of the total NO. At the lower firing rates (200 and 300 kW/m<sup>2</sup>, ϕ = 0.9), where total NO is low, nearly all of the NO is formed in the flame front. Zeldovich NO accounts for 20-30% percent of the total NO, the Fenimore pathway accounts for less than 10% of the NO, and 50-75% percent of the NO is formed through the NNH, N<sub>2</sub>O and other paths. Sensitivity analysis shows that NO production in the flame front is most sensitive to NNH+O = NH+NO, with CH+N<sub>2</sub> = HCN+N having the second highest sensitivity coefficient. At the lower firing rates NO emission is insensitive to porous medium properties, while at the high firing rate NO emission is slightly sensitive to porous medium properties.</p>

Publisher

Institute of Combustion Problems

Subject

Condensed Matter Physics,General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3