Author:
Do Hackwon,Lee Chang Woo,Han Se Jong,Lee Sung Gu,Kim Hak Jun,Park Hyun,Lee Jun Hyuck
Abstract
TheubiXgene (UniProtKB code Q489U8) ofColwellia psychrerythraeastrain 34H has been annotated as a putative flavin mononucleotide (FMN)-dependent aromatic acid decarboxylase. Based on previous studies of homologous proteins, CpsUbiX is thought to catalyze the decarboxylation of 3-octaprenyl-4-hydroxybenzoate to produce 2-polyprenylphenol in the ubiquinone-biosynthesis pathway using a noncovalently bound FMN molecule as a cofactor. However, the detailed mechanisms of this important enzyme are not yet clear and need to be further elucidated. In this study, it was found that the V47S single mutation resulted in a loss of FMN binding, resulting in the production of FMN-free CpsUbiX protein. This mutation is likely to destabilize FMN–protein interactions without affecting the overall structural folding. To fully characterize the conformational changes upon FMN binding and the enzymatic mechanism at the molecular level, the wild-type (FMN-bound) and V47S mutant (FMN-free) CpsUbiX proteins were purified and crystallized using the sitting-drop vapour-diffusion method. Furthermore, complete diffraction data sets for FMN-bound (space groupC2221) and FMN-free (space groupP23) forms were obtained to 2.0 and 1.76 Å resolution, respectively.
Publisher
International Union of Crystallography (IUCr)
Subject
Condensed Matter Physics,Genetics,Biochemistry,Structural Biology,Biophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献