Bond topology of chain, ribbon and tube silicates. Part I. Graph-theory generation of infinite one-dimensional arrangements of (TO4) n tetrahedra

Author:

Day Maxwell Christopher,Hawthorne Frank ChristopherORCID

Abstract

Chain, ribbon and tube silicates are based on one-dimensional polymerizations of (TO4) n tetrahedra, where T = Si4+ plus P5+, V5+, As5+, Al3+, Fe3+ and B3+. Such polymerizations may be represented by infinite graphs (designated chain graphs) in which vertices represent tetrahedra and edges represent linkages between tetrahedra. The valence-sum rule of bond-valence theory limits the maximum degree of any vertex to 4 and the number of edges linking two vertices to 1 (corner-sharing tetrahedra). The unit cell (or repeat unit) of the chain graph generates the chain graph through action of translational symmetry operators. The (infinite) chain graph is converted into a finite graph by wrapping edges that exit the unit cell such that they link to vertices within the unit cell that are translationally equivalent to the vertices to which they link in the chain graph, and the wrapped graph preserves all topological information of the chain graph. A symbolic algebra is developed that represents the degree of each vertex in the wrapped graph. The wrapped graph is represented by its adjacency matrix which is modified to indicate the direction of wrapped edges, up (+c) or down (−c) along the direction of polymerization. The symbolic algebra is used to generate all possible vertex connectivities for graphs with ≤8 vertices. This method of representing chain graphs by finite matrices may now be inverted to generate all non-isomorphic chain graphs with ≤8 vertices for all possible vertex connectivities. MatLabR2019b code is provided for computationally intensive steps of this method and ∼3000 finite graphs (and associated adjacency matrices) and ∼1500 chain graphs are generated.

Funder

Natural Sciences and Engineering Research Council of Canada

University of Manitoba

Publisher

International Union of Crystallography (IUCr)

Subject

Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3