An invertible seven-dimensional Dirichlet cell characterization of lattices

Author:

Bernstein Herbert J.ORCID,Andrews Lawrence C.ORCID,Xerri Mario

Abstract

Characterization of crystallographic lattices is an important tool in structure solution, crystallographic database searches and clustering of diffraction images in serial crystallography. Characterization of lattices by Niggli-reduced cells (based on the three shortest non-coplanar lattice vectors) or by Delaunay-reduced cells (based on four non-coplanar vectors summing to zero and all meeting at obtuse or right angles) is commonly performed. The Niggli cell derives from Minkowski reduction. The Delaunay cell derives from Selling reduction. All are related to the Wigner–Seitz (or Dirichlet, or Voronoi) cell of the lattice, which consists of the points at least as close to a chosen lattice point as they are to any other lattice point. The three non-coplanar lattice vectors chosen are here called the Niggli-reduced cell edges. Starting from a Niggli-reduced cell, the Dirichlet cell is characterized by the planes determined by 13 lattice half-edges: the midpoints of the three Niggli cell edges, the six Niggli cell face-diagonals and the four body-diagonals, but seven of the lengths are sufficient: three edge lengths, the three shorter of each pair of face-diagonal lengths, and the shortest body-diagonal length. These seven are sufficient to recover the Niggli-reduced cell.

Funder

U.S. Department of Energy, Office of Science

National Institutes of Health, National Institute of General Medical Sciences

Publisher

International Union of Crystallography (IUCr)

Subject

Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Measuring lattices;Acta Crystallographica Section A Foundations and Advances;2023-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3