Abstract
The benefit of computational methods applying density functional theory for the description and understanding of modulated crystal structures is investigated. A method is presented which allows one to establish, improve and test superspace models including displacive and occupational modulation functions from first-principles calculations on commensurate structures. The total energies of different configurations allow one to distinguish stable and less stable structure models. The study is based on a series of geometrically optimized superstructures of mullite (Al4+2x
Si2−2x
O10−x
) derived from the superspace group Pbam(α0½)0ss. Despite the disordered and structurally complex nature of mullite, the calculations on ordered superstructures are very useful for determining the ideal Al/Si ordering in mullite, extracting atomic modulation functions as well as understanding the SiO2–Al2O3 phase diagram. The results are compared with experimentally established models which confirm the validity and utility of the presented method.
Funder
Spanish Ministry of Economy and Competitiveness and FEDER funds
Government of the Basque Country
Publisher
International Union of Crystallography (IUCr)
Subject
Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献