Abstract
Three universal algorithms for geometrical comparison of abstract sets of n points in the Euclidean space R
3 are proposed. It is proved that at an accuracy ∊ the efficiency of all the algorithms does not exceed O(n
3/∊3/2). The most effective algorithm combines the known Hungarian and Kabsch algorithms, but is free of their deficiencies and fast enough to match hundreds of points. The algorithm is applied to compare both finite (ligands) and periodic (nets) chemical objects.
Funder
Russian Foundation for Basic Research
Publisher
International Union of Crystallography (IUCr)
Subject
Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献