Analysis of Sr3-xCa1+xMn2CoO9 combining electron, X-ray and neutron diffraction

Author:

Boullay Philippe,Pérez Olivier,Raveau Bernard,Motin Seikh,Vincent Caignaert

Abstract

The AxBX3 hexagonal perovskite-type compounds exhibit interesting magnetic properties such as complex magnetism or random spin chain magnetism[1,2]. Their structures are built up from infinite [BO3] chains consisting of alternating octahedral and trigonal prismatic units, separated by A infinite chains. Sr3-xCa1+xMn2CoO9 are belonging to this family of materials. X-ray powder diffraction patterns are collected for different Sr3-xCa1+xMn2CoO9 samples with different x values. Pattern matching analysis with the SG P-3 and the following cell parameters a=b=9.490(1)Å c=3xc'=3x2.57=7.732(1)Å reveals problematic groups of reflections; these reflections are shifted from one pattern to another one and, moreover, have positions preventing their indexation. Owing to the lack of spatial resolution and peaks overlapping in the powder data, the understanding of the present problem is quite impossible. Electron Diffraction Tomography (EDT) combined with Precession Electron Diffraction (PED) has been used for exploring the reciprocal space of the Sr3-xCa1+xMn2CoO9, x=0 sample. The slight deviations observed from the rational 1/3 c'* value is in agreement with the existence of aperiodicities. The structure of this family of materials has been then described using the super space formalism as a composite structure. The structural model is determined from the PED data integrated with PETS[2]; the first and second sublattices are referring to (Mn,Co)O3 and (Ca,Sr) structural parts respectively. This model is confirmed by the refinement of the X-ray powder diffraction data. Powder neutron diffraction data were then collected at PSI for different temperatures and different Sr3-xCa1+xMn2CoO9 samples. Using the previously refined model, a Co/Mn ordering is revealed thanks to the neutron scattering lengths of these two elements (see fig1). Finally, the treatment of the antiferromagnetic behavior observed bellow 25K is performed in the 4d approach using Jana2006[3].

Publisher

International Union of Crystallography (IUCr)

Subject

Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3