Observing structural reorientations at solvent–nanoparticle interfaces by X-ray diffraction – putting water in the spotlight

Author:

Zobel MirijamORCID

Abstract

Nanoparticles are attractive in a wide range of research genres due to their size-dependent properties, which can be in contrast to those of micrometre-sized colloids or bulk materials. This may be attributed, in part, to their large surface-to-volume ratio and quantum confinement effects. There is a growing awareness that stress and strain at the particle surface contribute to their behaviour and this has been included in the structural models of nanoparticles for some time. One significant oversight in this field, however, has been the fact that the particle surface affects its surroundings in an equally important manner. It should be emphasized here that the surface areas involved are huge and, therefore, a significant proportion of solvent molecules are affected. Experimental evidence of this is emerging, where suitable techniques to probe the structural correlations of liquids at nanoparticle surfaces have only recently been developed. The recent validation of solvation shells around nanoparticles has been a significant milestone in advancing this concept. Restructured ordering of solvent molecules at the surfaces of nanoparticles has an influence on the entire panoply of solvent–particle interactions during, for example, particle formation and growth, adhesion forces in industrial filtration, and activities of nanoparticle–enzyme complexes. This article gives an overview of the advances made in solvent–nanoparticle interface research in recent years: from description of the structure of bulk solids and liquidsviamacroscopic planar surfaces, to the detection of nanoscopic restructuring effects. Water–nanoparticle interfaces are given specific attention to illustrate and highlight their similarity to biological systems.

Publisher

International Union of Crystallography (IUCr)

Subject

Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3