An alternative to the goodness of fit

Author:

Henn Julian

Abstract

An alternative measure to the goodness of fit (GoF) is developed and applied to experimental data. The alternative goodness of fit squared (aGoFs) demonstrates that the GoF regularly fails to provide evidence for the presence of systematic errors, because certain requirements are not met. These requirements are briefly discussed. It is shown that in many experimental data sets a correlation between the squared residuals and the variance of observed intensities exists. These correlations corrupt the GoF and lead to artificially reduced values in the GoF and in the numerical value of thewR(F2). Remaining systematic errors in the data sets are veiled by this mechanism. In data sets where these correlations do not appear for the entire data set, they often appear for the decile of largest variances of observed intensities. Additionally, statistical errors for the squared goodness of fit, GoFs, and the aGoFs are developed and applied to experimental data. This measure shows how significantly the GoFs and aGoFs deviate from the ideal value one.

Publisher

International Union of Crystallography (IUCr)

Subject

Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Progress in detection of and correction for low-energy contamination;Journal of Applied Crystallography;2023-07-25

2. X-ray constrained wavefunctions based on Hirshfeld atoms. I. Method and review;Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials;2022-05-31

3. The influence of refinement strategies on the wavefunctions derived from an experiment;Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials;2021-09-28

4. Quantum chemical methods in charge density studies from X-ray diffraction data;Russian Chemical Reviews;2019-07-01

5. Metrics for crystallographic diffraction- and fit-data: a review of existing ones and the need for new ones;Crystallography Reviews;2019-04-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3