X-ray constrained spin-coupled technique: theoretical details and further assessment of the method

Author:

Genoni AlessandroORCID,Macetti GiovanniORCID,Franchini Davide,Pieraccini Stefano,Sironi MaurizioORCID

Abstract

One of the well-established methods of modern quantum crystallography is undoubtedly the X-ray constrained wavefunction (XCW) approach, a technique that enables the determination of wavefunctions which not only minimize the energy of the system under examination, but also reproduce experimental X-ray diffraction data within the limit of the experimental errors. Initially proposed in the framework of the Hartree–Fock method, the strategy has been gradually extended to other techniques of quantum chemistry, but always remaining limited to a single-determinant ansatz for the wavefunction to extract. This limitation has been recently overcome through the development of the novel X-ray constrained spin-coupled (XCSC) approach [Genoni et al. (2018). Chem. Eur. J. 24, 15507–15511] which merges the XCW philosophy with the traditional spin-coupled strategy of valence bond theory. The main advantage of this new technique is the possibility of extracting traditional chemical descriptors (e.g. resonance structure weights) compatible with the experimental diffraction measurements, without the need to introduce information a priori or perform analyses a posteriori. This paper provides a detailed theoretical derivation of the fundamental equations at the basis of the XCSC method and also introduces a further advancement of its original version, mainly consisting in the use of molecular orbitals resulting from XCW calculations at the Hartree–Fock level to describe the inactive electrons in the XCSC computations. Furthermore, extensive test calculations, which have been performed by exploiting high-resolution X-ray diffraction data for salicylic acid and by adopting different basis sets, are presented and discussed. The computational tests have shown that the new technique does not suffer from particular convergence problems. Moreover, all the XCSC calculations provided resonance structure weights, spin-coupled orbitals and global electron densities slightly different from those resulting from the corresponding unconstrained computations. These discrepancies can be ascribed to the capability of the novel strategy to capture the information intrinsically contained in the experimental data used as external constraints.

Funder

Agence Nationale de la Recherche

Publisher

International Union of Crystallography (IUCr)

Subject

Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Critical assessment of the x-ray restrained wave function approach: Advantages, drawbacks, and perspectives for density functional theory and periodic ab initio calculations;The Journal of Chemical Physics;2024-06-20

2. Current developments and trends in quantum crystallography;Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials;2024-06-18

3. Wave functions consistent with experimental x-ray diffraction data: A hircocervus becomes reality;Chemical Physics Reviews;2024-06-01

4. Overview of Electronic Structure Crystallography;Electronic Structure Crystallography and Functional Motifs of Materials;2024-01-12

5. Valence Bond Description of Halogen Bonding;Comprehensive Computational Chemistry;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3