Crystal search – feasibility study of a real-time deep learning process for crystallization well images

Author:

Thielmann Yvonne,Luft ThorstenORCID,Zint Norbert,Koepke Juergen

Abstract

To avoid the time-consuming and often monotonous task of manual inspection of crystallization plates, a Python-based program to automatically detect crystals in crystallization wells employing deep learning techniques was developed. The program uses manually scored crystallization trials deposited in a database of an in-house crystallization robot as a training set. Since the success rate of such a system is able to catch up with manual inspection by trained persons, it will become an important tool for crystallographers working on biological samples. Four network architectures were compared and the SqueezeNet architecture performed best. In detecting crystals AlexNet accomplished a better result, but with a lower threshold the mean value for crystal detection was improved for SqueezeNet. Two assumptions were made about the imaging rate. With these two extremes it was found that an image processing rate of at least two times, but up to 58 times in the worst case, would be needed to reach the maximum imaging rate according to the deep learning network architecture employed for real-time classification. To avoid high workloads for the control computer of the CrystalMation system, the computing is distributed over several workstations, participating voluntarily, by the grid programming system from the Berkeley Open Infrastructure for Network Computing (BOINC). The outcome of the program is redistributed into the database as automatic real-time scores (ARTscore). These are immediately visible as colored frames around each crystallization well image of the inspection program. In addition, regions of droplets with the highest scoring probability found by the system are also available as images.

Funder

Max-Planck-Gesellschaft

Publisher

International Union of Crystallography (IUCr)

Subject

Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3