Spiral tetrahedral packing in the β-Mn crystal as symmetry realization of the 8D E 8 lattice

Author:

Talis AlexanderORCID,Everstov Ayal,Kraposhin ValentinORCID

Abstract

Experimental values of atomic positions in the β-Mn crystal permit one to distinguish among them a fragment of the helix containing 15 interpenetrating distorted icosahedra, 90 vertices and 225 tetrahedra. This fragment corresponds to the closed helix of 15 icosahedra in the 4D {3, 3, 5} polytope. The primitive cubic lattice of these icosahedral helices envelopes not only all atoms of β-Mn, but also all tetrahedra belonging to the tiling of the β-Mn structure. The 2D projection of all atomic positions in the β-Mn unit cells shows that they are situated (by neglecting small differences) on three circumferences containing 2D projections of 90 vertices of the {3, 3, 5} polytope on the same plane. Non-crystallographic symmetry of the β-Mn crystal is defined by mapping the closed icosahedral helix of the {3, 3, 5} polytope into 3D Euclidean space E 3. This interpretation must be correlated also with the known previous determination of non-crystallographic symmetry of the β-Mn crystal by mapping into the 3D E 3 space system of icosahedra from the 6D cubic B 6 lattice. The recently proposed determination of non-crystallographic symmetry of the β-Mn crystal actually uses the symmetries of the 8D E 8 lattice, in which both the 4D {3, 3, 5} polytope and cubic 6D B 6 lattice can be inserted.

Funder

Russian Foundation for Basic Research

Ministry of Science and Higher Education of the Russian Federation

Publisher

International Union of Crystallography (IUCr)

Subject

Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology

Reference33 articles.

1. Cartan, E. (1983). Geometry of Riemannian Spaces. Brookline: MSP.

2. Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. & Wilson, R. A. (1985). Atlas of Finite Groups. Oxford: Clarendon Press.

3. Conway, J. H. & Sloane, N. J. A. (1998). Sphere Packings, Lattices and Groups. New York: Springer.

4. Coxeter, H. S. M. (1973). Regular Polytopes. New York: Dover Publications.

5. Regular and semi-regular polytopes. III

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3