Machine learning for classifying narrow-beam electron diffraction data

Author:

Matinyan Senik,Demir Burak,Filipcik Pavel,Abrahams Jan Pieter,van Genderen Eric

Abstract

As an alternative approach to X-ray crystallography and single-particle cryo-electron microscopy, single-molecule electron diffraction has a better signal-to-noise ratio and the potential to increase the resolution of protein models. This technology requires collection of numerous diffraction patterns, which can lead to congestion of data collection pipelines. However, only a minority of the diffraction data are useful for structure determination because the chances of hitting a protein of interest with a narrow electron beam may be small. This necessitates novel concepts for quick and accurate data selection. For this purpose, a set of machine learning algorithms for diffraction data classification has been implemented and tested. The proposed pre-processing and analysis workflow efficiently distinguished between amorphous ice and carbon support, providing proof of the principle of machine learning based identification of positions of interest. While limited in its current context, this approach exploits inherent characteristics of narrow electron beam diffraction patterns and can be extended for protein data classification and feature extraction.

Funder

HORIZON EUROPE Marie Sklodowska-Curie Actions

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

International Union of Crystallography (IUCr)

Subject

Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology

Reference22 articles.

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y. & Zheng, X. (2016). Proceedings of the 12th USENIX Symposium on Operating Systems Design Implementation, OSDI 2016, Savannah, GA, USA, pp. 265-283.

2. Effects of dataset size and interactions on the prediction performance of logistic regression and deep learning models

3. Bishop, C. M. (2013). Phil. Trans. R. Soc. A. 371, 20120222.

4. Cun, L., Henderson, J., Le Cun, Y., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. & Jackel, L. D. (1989). Advances in Neural Information Processing Systems, Vol. 2, pp. 396-404. edited by D. Touretzky. Morgan Kaufman Publishers.

5. Ede, J. M. (2021). Mach. Learn.: Sci. Technol. 2, 011004.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3