Indexing of grazing-incidence X-ray diffraction patterns: the case of fibre-textured thin films

Author:

Simbrunner Josef,Simbrunner ClemensORCID,Schrode BenediktORCID,Röthel Christian,Bedoya-Martinez NataliaORCID,Salzmann IngoORCID,Resel RolandORCID

Abstract

Crystal structure solutions from thin films are often performed by grazing-incidence X-ray diffraction (GIXD) experiments. In particular, on isotropic substrates the thin film crystallites grow in a fibre texture showing a well defined crystallographic plane oriented parallel to the substrate surface with random in-plane order of the microcrystallites forming the film. In the present work, analytical mathematical expressions are derived for indexing experimental diffraction patterns, a highly challenging task which hitherto mainly relied on trial-and-error approaches. The six lattice constants a, b, c, α, β and γ of the crystallographic unit cell are thereby determined, as well as the rotation parameters due to the unknown preferred orientation of the crystals with respect to the substrate surface. The mathematical analysis exploits a combination of GIXD data and information acquired by the specular X-ray diffraction. The presence of a sole specular diffraction peak series reveals fibre-textured growth with a crystallographic plane parallel to the substrate, which allows establishment of the Miller indices u, v and w as the rotation parameters. Mathematical expressions are derived which reduce the system of unknown parameters from the three- to the two-dimensional space. Thus, in the first part of the indexing routine, the integers u and v as well as the Laue indices h and k of the experimentally observed diffraction peaks are assigned by systematically varying the integer variables, and by calculating the three lattice parameters a, b and γ. Because of the symmetry of the derived equations, determining the missing parameters then becomes feasible: (i) w of the surface parallel plane, (ii) the Laue indices l of the diffraction peak and (iii) analogously the lattice constants c, α and ß. In a subsequent step, the reduced unit-cell geometry can be identified. Finally, the methodology is demonstrated by application to an example, indexing the diffraction pattern of a thin film of the organic semiconductor pentacenequinone grown on the (0001) surface of highly oriented pyrolytic graphite. The preferred orientation of the crystallites, the lattice constants of the triclinic unit cell and finally, by molecular modelling, the full crystal structure solution of the as-yet-unknown polymorph of pentacenequinone are determined.

Funder

Austrian Science Fund

Publisher

International Union of Crystallography (IUCr)

Subject

Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3