Instrumentation development for crystallography at high-pressure

Author:

Kamenev Konstantin,Jacobsen Matthew,Ridley Christopher,Wang Xiao,Bull Craig,Kirichek Oleg,Attfield J. Paul

Abstract

Historically high-pressure (HP) research has been an area that is heavily dependent on the availability of the experimental equipment. Many of the discoveries in HP science followed promptly from breakthroughs in instrumentation development, which provided researchers with higher pressure limits or larger sample volumes. A limited availability of commercial pressure cells and the need to remain at the cutting edge of the research make it likely that anyone working in this field will at some point engage in designing new or in modifying existing HP equipment. This presentation aims to introduce an engineering approach to developing pressure cells and to present such generic tools as computer aided design (CAD) and finite element analysis (FEA). The use of engineering methods in the design of HP equipment will be illustrated using recently developed pressure cells. This includes some new devices for neutron scattering such as gas-driven sapphire anvil pressure cell for changing pressure at cryogenic temperatures in neutron diffraction experiments [1]. Another example is a gas loader for the P-E press which can be used to load gases into the sample space at elevated pressures for subsequent studies of gases and gas mixtures as well as for use of gases as pressure-transmitting media to pressures of over 18 GPa [2]. The examples of use of FEA for miniaturization of the pressure cells and their components will include miniature pressure cells for X-ray diffraction with cryo-flow refrigerators shown in the Figure below [3].

Publisher

International Union of Crystallography (IUCr)

Subject

Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3