First evidence of a phase transition in a high-pressure metal iodate.

Author:

Suffren Yan,Gautier-Luneau Isabelle,Darie Céline,Goujon Céline,Legendre Murielle,Leynaud Olivier

Abstract

In the 1970s, a large number of metal iodates compounds were extensively investigated for their nonlinear optics (NLO) properties as well as for their ferroelectric, piezoelectric, and pyroelectric properties. Interest in these compounds resumed in the early 2000s. We have shown that metal iodates are particularly interesting for for quadratic NLO in mid IR, as they possess a large domain of transparency from the visible region to the beginning of the far IR region (12.5 μm), thus covering the three atmospheric transparency windows. The synthesis of metal iodates has so far been mainly investigated by solution chemistry, under hydrothermal conditions or by the flux method. The solid state synthesis of these compounds at high pressure has never been explored. To date, only the structural evolution of α-LiIO3 with pressure has been studied by X-ray powder diffraction [1]. It was shown that, at room temperature, α-LiIO3 is stable up to 75 GPa; only compression of the lattice parameters with pressure was observed. In this work, we present a new phase of silver iodate obtained at high pressure from α-AgIO3 and characterized by X-ray powder diffraction. The α-AgIO3 to β-AgIO3 transition was characterized by differential thermal analysis (DTA) at high pressure [2-3]. The thermal behaviors of α-AgIO3 and β-AgIO3 were studied by differential scanning calorimetry (DSC) at ambient pressure and in situ temperature-dependent X-ray powder diffraction. Structural studies of these two phases were carried out to understand the formation of β-AgIO3.

Publisher

International Union of Crystallography (IUCr)

Subject

Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3