The role of an objective function in the mathematical modelling of wide-angle X-ray diffraction curves of semi-crystalline polymers

Author:

Rabiej MałgorzataORCID,Rabiej StanisławORCID

Abstract

To decompose a wide-angle X-ray diffraction (WAXD) curve of a semi-crystalline polymer into crystalline peaks and amorphous halos, a theoretical best-fitted curve, i.e. a mathematical model, is constructed. In fitting the theoretical curve to the experimental one, various functions can be used to quantify and minimize the deviations between the curves. The analyses and calculations performed in this work have proved that the quality of the model, its parameters and consequently the information on the structure of the investigated polymer are considerably dependent on the shape of an objective function. It is shown that the best models are obtained employing the least-squares method in which the sum of squared absolute errors is minimized. On the other hand, the methods in which the objective functions are based on the relative errors do not give a good fit and should not be used. The comparison and evaluation were performed using WAXD curves of seven polymers: isotactic polypropylene, polyvinylidene fluoride, cellulose I, cellulose II, polyethylene, polyethylene terephthalate and polyamide 6. The methods were compared and evaluated using statistical tests and measures of the quality of fitting.

Publisher

International Union of Crystallography (IUCr)

Subject

Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology

Reference41 articles.

1. Ash, R. B. & Doleans-Dade, C. A. (2000). Probability and Measure Theory, 2nd ed. San Diego: Elsevier Science Publishing Co. Inc.

2. Evidence for a partially ordered component in polyethylene from wide-angle X-ray diffraction

3. X-ray diffractometric study of microcrystallite size of naturally colored cottons

4. Conover, W. J. (1999). Practical Nonparametric Statistics, 3rd ed. New York: Wiley.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3