Theoretical study of the properties of X-ray diffraction moiré fringes. III. Theoretical simulation of previous experimental moiré images

Author:

Yoshimura Jun-ichi

Abstract

As a practical confirmation of a recently published X-ray moiré-fringe theory [Yoshimura (2015). Acta Cryst. A71, 368–381], computer simulations using this theory were conducted for previous experimental moiré images of a strained bicrystal specimen [Yoshimura (1996). Acta Cryst. A52, 312–325]. Simulated moiré images with a good or fairly good likeness are presented as a result of this simulation, in which the characteristic fringe-and-band and local strain patterns in the experimental images are reproduced well. Experimental moiré images taken when the inclination of the lattice planes was forcedly increased in one of the component crystals of the bicrystal specimen were also fairly well simulated in this computation, and their fringe patterns of inclined fringes are shown to be in accordance with the prediction by the theory. This moiré-fringe theory is thus considered to be widely applicable to the study of moiré images. Furthermore, the successful simulation of the previous experimental moiré images means that a satisfactory theoretical explanation was given for the experimental images, with respect to their characteristic global features. However, this study by the theoretical simulation shows explicitly that some significant peculiarities in the fringe profiles of the experimental images still remain unexplained by this moiré-fringe theory.

Publisher

International Union of Crystallography (IUCr)

Subject

Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology

Reference20 articles.

1. Nagakura, S. (1972). Personal communication.

2. Ohhashi, H. & Hirano, K. (2008). Introduction to Synchrotron Beam Line Optical Techniques. The Japanese Society for Synchrotron Radiation Research.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3