Surface embeddings of the Klein and the Möbius–Kantor graphs

Author:

Pedersen Martin Cramer,Delgado-Friedrichs Olaf,Hyde Stephen T.

Abstract

This paper describes an invariant representation for finite graphs embedded on orientable tori of arbitrary genus, with working examples of embeddings of the Möbius–Kantor graph on the torus, the genus-2 bitorus and the genus-3 tritorus, as well as the two-dimensional, 7-valent Klein graph on the tritorus (and its dual: the 3-valent Klein graph). The genus-2 and -3 embeddings describe quotient graphs of 2- and 3-periodic reticulations of hyperbolic surfaces. This invariant is used to identify infinite nets related to the Möbius–Kantor and 7-valent Klein graphs.

Funder

Carlsbergfondet

Publisher

International Union of Crystallography (IUCr)

Subject

Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mapping hyperbolic order in curved materials;Soft Matter;2023

2. Enumerating Isotopy Classes of Tilings Guided by the Symmetry of Triply Periodic Minimal Surfaces;SIAM Journal on Applied Algebra and Geometry;2022-02-28

3. Design of schwarzite templates based on energy minimization of surfaces;Carbon Trends;2021-10

4. Schwarzite nets: a wealth of 3-valent examples sharing similar topologies and symmetries;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2021-02

5. Isotopic tiling theory for hyperbolic surfaces;Geometriae Dedicata;2020-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3