Abstract
Statistically sound crystallographic symmetry classifications are obtained with information-theory-based methods in the presence of approximately Gaussian distributed noise. A set of three synthetic patterns with strong Fedorov-type pseudosymmetries and varying amounts of noise serve as examples. Contrary to traditional crystallographic symmetry classifications with an image processing program such as CRISP, the classification process does not need to be supervised by a human being and is free of any subjectively set thresholds in the geometric model selection process. This enables crystallographic symmetry classification of digital images that are more or less periodic in two dimensions (2D), also known as crystal patterns, as recorded with sufficient structural resolution from a wide range of crystalline samples with different types of scanning probe and transmission electron microscopes. Correct symmetry classifications enable the optimal crystallographic processing of such images. That processing consists of the averaging over all asymmetric units in all unit cells in the selected image area and significantly enhances both the signal-to-noise ratio and the structural resolution of a microscopic study of a crystal. For sufficiently complex crystal patterns, the information-theoretic symmetry classification methods are more accurate than both visual classifications by human experts and the recommendations of one of the popular crystallographic image processing programs of electron crystallography.
Publisher
International Union of Crystallography (IUCr)
Subject
Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献