Abstract
The previously reported exact potential and multipole moment (EP/MM) method for fast and precise evaluation of the intermolecular electrostatic interaction energies in molecular crystals using the pseudoatom representation of the electron density [Nguyen, Macchi & Volkov (2020), Acta Cryst. A76, 630–651] has been extended to the calculation of the electrostatic potential (ESP), electric field (EF) and electric field gradient (EFG) in an infinite crystal. The presented approach combines an efficient Ewald-type summation (ES) of atomic multipoles up to the hexadecapolar level in direct and reciprocal spaces with corrections for (i) the net polarization of the sample (the `surface term') due to a net dipole moment of the crystallographic unit cell (if present) and (ii) the short-range electron-density penetration effects. The rederived and reported closed-form expressions for all terms in the ES algorithm have been augmented by the expressions for the surface term available in the literature [Stenhammar, Trulsson & Linse (2011), J. Chem. Phys.
134, 224104] and the exact potential expressions reported in a previous study [Volkov, King, Coppens & Farrugia (2006), Acta Cryst. A62, 400–408]. The resulting algorithm, coded using Fortran in the XDPROP module of the software package XD, was tested on several small molecular crystal systems (formamide, benzene, L-dopa, paracetamol, amino acids etc.) and compared with a series of EP/MM-based direct-space summations (DS) performed within a certain number of unit cells generated along both the positive and negative crystallographic directions. The EP/MM-based ES technique allows for a noticeably more precise determination of the EF and EFG and significantly better precision of the evaluated ESP when compared with the DS calculations, even when the latter include contributions from an array of symmetry-equivalent atoms generated within four additional unit cells along each crystallographic direction. In terms of computational performance, the ES/EP/MM method is significantly faster than the DS calculations performed within the extended unit-cell limits but trails the DS calculations within the reduced summation ranges. Nonetheless, the described EP/MM-based ES algorithm is superior to the direct-space summations as it does not require the user to monitor continuously the convergence of the evaluated properties as a function of the summation limits and offers a better precision–performance balance.
Funder
Middle Tennessee State University
Publisher
International Union of Crystallography (IUCr)
Subject
Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology
Reference102 articles.
1. On the evaluation of molecular dipole moments from multipole refinement of X-ray diffraction data
2. The experimental charge-density approach in the evaluation of intermolecular interactions. Application of a new module of theXDprogramming package to several solids including a pentapeptide
3. Ewald summation of electrostatic multipole interactions up to the quadrupolar level
4. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1995). International Tables for Crystallography, Vol. C. Dordrecht: Kluwer Academic Publishers.
5. Allen, M. P. & Tildesley, D. J. (2017). Computer Simulation of Liquids, 2nd ed. Oxford University Press.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Current developments and trends in quantum crystallography;Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials;2024-06-18
2. Electron density is not spherical: the many applications of the transferable aspherical atom model;Computational and Structural Biotechnology Journal;2022