Abstract
All the current variants of Jayatilaka's X-ray constrained wavefunction (XCW) approach work within the framework of the single-determinant wavefunctionansatz. In this paper, a first-prototype multi-determinant XCW technique is proposed. The strategy assumes that the desired XCW is written as a valence-bond-like expansion in terms of pre-determined single Slater determinants constructed with extremely localized molecular orbitals. The method, which can be particularly suitable to investigate systems with a multi-reference character, has been applied to determine the weights of the resonance structures of naphthalene at different temperatures by exploiting experimental high-resolution X-ray diffraction data. The results obtained have shown that the explicit consideration of experimental structure factors in the determination of the resonance structure weights may lead to results significantly different compared with those resulting only from the simple energy minimization.
Publisher
International Union of Crystallography (IUCr)
Subject
Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献