A general force field by machine learning on experimental crystal structures. Calculations of intermolecular Gibbs energy withFlexCryst

Author:

Hofmann Detlef Walter Maria,Kuleshova Liudmila NikolaevnaORCID

Abstract

Machine learning was employed on the experimental crystal structures of the Cambridge Structural Database (CSD) to derive an intermolecular force field for all available types of atoms (general force field). The obtained pairwise interatomic potentials of the general force field allow for the fast and accurate calculation of intermolecular Gibbs energy. The approach is based on three postulates regarding Gibbs energy: the lattice energy must be below zero, the crystal structure must be a local minimum, and, if available, the experimental and the calculated lattice energy must coincide. The parametrized general force field was then validated regarding these three conditions. First, the experimental lattice energy was compared with the calculated energies. The observed errors were found to be in the order of experimental errors. Second, Gibbs lattice energy was calculated for all structures available in the CSD. Their energy values were found to be below zero in 99.86% of the cases. Finally, 500 random structures were minimized, and the change in density and energy was examined. The mean error in the case of density was below 4.06%, and for energy it was below 5.7%. The obtained general force field calculated Gibbs lattice energies of 259 041 known crystal structures within a few hours. Since Gibbs energy defines the reaction energy, the calculated energy can be used to predict chemical–physical properties of crystals, for instance, the formation of co-crystals, polymorph stability and solubility.

Publisher

International Union of Crystallography (IUCr)

Subject

Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3