Image definition evaluation functions for X-ray crystallography: a new perspective on the phase problem

Author:

Li Hui,He Meng,Zhang Ze

Abstract

The core theme of X-ray crystallography is reconstructing the electron-density distribution of crystals under the constraints of observed diffraction data. Nevertheless, reconstruction of the electron-density distribution by straightforward Fourier synthesis is usually hindered due to the well known phase problem and the finite resolution of diffraction data. In analogy with optical imaging systems, the reconstructed electron-density map may be regarded as the image of the real electron-density distribution in crystals. Inspired by image definition evaluation functions applied in the auto-focusing process, two evaluation functions are proposed for the reconstructed electron-density images. One of them is based on the atomicity of the electron-density distribution and properties of Fourier synthesis. Tests were performed on synthetic data of known structures, and it was found that this evaluation function can distinguish the correctly reconstructed electron-density image from wrong ones when diffraction data of atomic resolution are available. An algorithm was established based on this evaluation function and applied in reconstructing the electron-density image from the synthetic data of known structures. The other evaluation function, which is based on the positivity of electron density and constrained power spectrum entropy maximization, was designed for cases where only diffraction data of rather limited resolution are available. Tests on the synthetic data indicate that this evaluation function may identify the correct phase set even for a data set with resolution as low as 3.5 Å. Though no algorithm for structure solution has been figured out based on the latter function, the results presented here provide a new perspective on the phase problem.

Publisher

International Union of Crystallography (IUCr)

Subject

Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3