Abstract
This work analyzes the effects of a nearby Hf or Zr dopant on the electron density trapped at an oxygen vacancy site. The two metals are among the dopants used to achieve thermoluminescence and energy storage in phosphors based on cubic lutetium oxide (c-Lu2O3). The presence of oxygen vacancies is anticipated in those phosphors. If the dopant is located outside the immediate surroundings of the vacancy site, the resulting optical trap depth is similar to that of the isolated oxygen vacancies (1.6–1.7 eV versus 1.7 eV). If the dopant is one of the four metal cations surrounding the vacancy site, the corresponding trap depth is 2.0–2.1 eV. Using time-dependent density-functional theory calculations, it was found that the excitation of the vacancy-trapped electrons can take two forms: a local excited state at the vacancy site can be formed, or an electron transfer to Hf might occur. With charge compensation in mind, several structures with three defects were analyzed: the dopant cation, the vacancy and an interstitial oxygen (Hf/Zr plus a Frenkel pair). These last two systems with the dopant in a +4 oxidation state and a single electron trapped at the vacancy site correspond to zero total charge, while another electron can be trapped. The vacancy site is expected to trap the electron, not the dopant. The composite defects of the dopant and Frenkel pair are thus considered the most likely electron traps in cubic Lu2O3:Hf and cubic Lu2O3:Zr.
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Electron traps and energy storage: modeling a bright path to the future;Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials;2023-11-23