Preparation and crystallographic characterization of 1H-tetrazole/NaClO4 energetic cocrystal

Author:

Inoue Kazuki,Matsumoto ShinyaORCID,Kumasaki Mieko

Abstract

Cocrystallization is a promising method for generating new energetic materials with improved performances. Herein, a novel energetic cocrystal composed of 1H-tetrazole/sodium perchlorate was prepared using the solvent evaporation method. This cocrystal is characterized as containing organic azole derivatives and an ionic perchlorate salt, which is used as an oxidizer in pyrotechnics. The crystal structure was determined via single-crystal X-ray diffraction. The as-prepared crystal exhibited a lamellar structure consisting of 1H-tetrazole and sodium perchlorate layers. A molecular structure comparison between the cocrystal and pristine ingredients revealed variations in the bond lengths and angles owing to the cocrystallization. The hydrogen bond formed by adjacent tetrazole rings was strengthened. The 1H-tetrazole/sodium perchlorate cocrystal was structurally compared with crystals previously reported to the Cambridge Structural Database including sodium perchlorate in lamellar structures. The lamellar structure of the cocrystal exhibited weak layer-to-layer interactions compared with those of the other crystals. Fourier transform infrared and Raman spectroscopy analyses were conducted, and the relationship between the spectroscopy results and the crystal/molecular structure are discussed. The results of the spectroscopic analyses exhibited peak shifts that indicate structural changes in bond lengths and angles owing to the cocrystallization.

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3