Crystal and magnetic structures of R 2Ni1.78In compounds (R = Tb, Ho, Er and Tm)

Author:

Baran StanisławORCID,Deptuch AleksandraORCID,Hoser AndreasORCID,Penc Bogusław,Tyvanchuk YuriyORCID,Szytuła Andrzej

Abstract

The crystal and magnetic structures in R 2Ni1.78In (R = Ho, Er and Tm) have been studied by neutron diffraction. The compounds crystallize in a tetragonal crystal structure of the Mo2FeB2 type (space group P4/mbm). At low temperatures, the magnetic moments, localized solely on the rare earth atoms, form antiferromagnetic structures described by the propagation vector k = [kx , kx , ½], with kx equal to ¼ for R = Er and Tm or 0.3074 (4) for R = Ho. The magnetic moments are parallel to the c axis for R = Ho or lie within the (001) plane for R = Er and Tm. The obtained magnetic structures are discussed on the basis of symmetry analysis. The rare earth magnetic moments, determined from neutron diffraction data collected at 1.6 K, are 6.5 (1) μB (Er) and 6.09 (4) μB (Tm), while in the incommensurate modulated magnetic structure in Ho2Ni1.78In the amplitude of modulation of the Ho magnetic moment is 7.93 (8) μB. All these values are smaller than those expected for the respective free R 3+ ions. A symmetry analysis of the magnetic structure in Tb2Ni1.78In is also included, as such information is missing from the original paper [Szytuła, Baran, Hoser, Kalychak, Penc & Tyvanchuk (2013). Acta Phys. Pol. A, 124, 994–997]. In addition, the results of magnetometric measurements are reported for Tm2Ni1.78In. The compound shows antiferromagnetic ordering below the Néel temperature of 4.5 K. Its magnetic properties are found to originate from magnetic moments localized solely on the thulium atoms (the nickel atoms remain non-magnetic in Tm2Ni1.78In). The reduction of rare earth magnetic moments in the ordered state in R 2Ni1.78In (R = Tb, Ho, Er and Tm) and the change in direction of the moments indicate the influence of the crystalline electric field (CEF) on the stability of the magnetic order in the investigated compounds.

Funder

European Regional Development Fund, Polish Innovation Economy Operational Program

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3