Author:
Wang Xiaoge,Shen Yihan,Liu Rongli,Liu Xiaolong,Lin Cong,Shi Dier,Chen Yanping,Liao Fuhui,Lin Jianhua,Sun Junliang
Abstract
Classical crystallography is based on the translational periodicity of crystals and the analysis of discrete Bragg reflections. However, it is inadequate for determining disordered structures, of which the diffuse scattering is vital to evaluate the disorder level. The correlated disorder of IM-18 presents as zigzag chains arranged in translational periodicity and the double four-ring units randomly distributed along two dimensions. Supercell models regulated by multiple probabilities were systematically built to simulate the single-crystal and powder X-ray diffraction patterns in order to ascertain the specific disorder configuration in the single-crystal or polycrystalline samples of IM-18. The presence of defects in the polycrystalline sample was proved by combining 29Si magic angle spinning (MAS) NMR and 1H–1H double quantum MAS NMR spectra, and was quantitatively explored by the simulation method. The method could also elucidate other disordered structures in polycrystalline or single-crystal samples, despite the presence of defects or multidimensional disorder.
Funder
National Basic Research Program
National Natural Science Foundation of China
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献