Dehydration of microporous vanadosilicates: the case of VSH-13Na

Author:

Danisi Rosa MicaelaORCID,Armbruster ThomasORCID

Abstract

Microporous VSH-13Na of composition Na2(VO)(Si4O10)·3H2O was synthesized under mild hydrothermal conditions and studied by single-crystal X-ray diffraction at room temperature and 398 K. Its vanadosilicate framework, consisting of sheets of silicate tetrahedra connected by vanadyl-type square-based pyramids, closely resembles that of the mineral cavansite, Ca(VO)(Si4O10)·4H2O. Due to the disorder in the orientation of the short apical vanadyl groups, the topological symmetry of VSH-13Na was originally described in space group Imma. However, when analysing the systematic absences in our dataset, only the 21 screw axis along b was strictly fulfilled suggesting monoclinic space group P1211. The resulting structure in P21 with a = 14.364 (4), b = 9.134 (2), c = 10.373 (3) Å, β = 90.056 (7)°, V = 1360.9 (7) Å3 was interpreted as a case of allotwinning of two polytypes with topologically idealized orthorhombic symmetry: A (∼62%) with antiparallel orientation of the vanadyl groups in adjacent (100) layers and B (∼38%) with all vanadyl groups in adjacent layers oriented in the same way. At 398 K, the structure of VSH-13Na became fully dehydrated and adopted the unit-cell parameters a = 12.584 (16), b = 9.525 (13), c = 9.696 (14) Å, β = 90.10 (4)°, V = 1162 (3) Å3 (space group P21). Release of H2O caused severe contraction of T—O—T angles and the unit-cell volume decreased by ∼15%. Despite their structural similarity, the VSH-13Na framework seems to be more flexible upon dehydration compared with cavansite, whose structure collapsed before removal of the last H2O molecule. Thus, the presence of monovalent or divalent extraframework cations plays a key role in the dehydration process of natural and synthetic vanadosilicates.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dehydration and lithium ion-exchange of the open framework vanadium silicate VSH-16Na;Microporous and Mesoporous Materials;2021-05

2. The chromatic symmetry of twins and allotwins;Acta Crystallographica Section A Foundations and Advances;2019-04-30

3. Introduction to the special issue on mineralogical crystallography;Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials;2018-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3